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A method is given for determining the supplementary loading due to side- 
slip. The method is based on studies of the nonlinear equation for the 
velocity potential. The case in which. with M > 1, the method of small 
parameters reduces in second approximation to infinitely large first 
derivatives is dealt with in greater detail. 

When calculating the pressure on a wing under conditions of sideslip 
at supersonic velocity it is customary to solve the linearized equation 
for the velocity potential. In order to linearize the equation, it is 
sufficient to assume only a small angle of incidence. No limits are im- 
posed on the actual angle of sideslip itself. The problem is somewhat 
more difficult than that of flow past a wing, symmetrical about a longi- 
tudinal axis, without sideslip. As a rule, however, the most interesting 
cases occur when the angle of sideslip is of the same order as the inci- 
dence. With small incidence, then, the supplementary pressure caused by 
the sideslip becomes a quantity of second order of magnitude as compared 
with the pressure over a wing without sideslip. When determining the 
supplementary pressure this circumstance allows one to deal with small 
changes in the shape of the body in the flow. This simplification in 
boundary conditions is only valid for the case when the solution can be 
written down explicitly as a function of local angles of incidence. In 
cases where this is not possible (for instance when dealing with flow 
past a wing with subsonic leading edges) the assumption of small angles 
of sideslip does not simplify the problem. 

When the angle of incidence and that of sideslip are of the same order 
of magnitude another way is open. One can try to keep the regions where 
the boundary conditions are known the same as for flow without sideslip. 
This is accomplished by choosing suitable body axes. The differential 
equation, defining the solution to the problem, can change in this case. 
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1. Equation for the supplementary potential and boundary 
conditions in coordinate axes fixed to the wing. We neglect 
third-order terms and regard the flow as potential both at subsonic and 

supersonic velocities. Let Q be the velocity potential. We determine the 

supplementary velocity potential 6 from the equation 

(Fig. 1 shows the symbol designations) and arrive at the following equa- 

tion: 

- 2M2 -c.?!L acp - 2A”1f 2 J?YLg - 
ax ChJ afJ 

2M2a~- 2M2P2 (1.1) . 

In Equation (1.1) the M number refers to the approaching stream U,. 

We write down the boundary conditions for the wing to the same order 

of accuracy. The wing surface is only partly in plane y = 0. The condi- 

tion of gas flow past [through I this surface is of the form 

a+dq/&J=O (1.3) 

It is evident that the boundary conditions on 

the wing are independent of sideslip angle. 

If we apply the small-parameter method to 

Equation (l), we set+= +I + C#J~ + &'+ . . . (the 

Fig. 1. subscript indicates the order of magnitude). 

Second-order quantities are expressed as the sum 

of two terms, one of which, $, is equal to a second-order quantity in 

the velocity potential round the wing, without sideslip; functions &, 

& and & satisfy the following equations: 

(I 3) 



1318 M.F. Pritulo 

On the wing surface 

Tbe formula for calculating the pressure will change with the differ- 

ential equation for supplementary pressure 4 in the wing system of co- 

ordinates. To a second order, inclusive 

For the first approximation 

po= -2acp,/azx (1s) 

It follows from (1.3), the first formula (1.6) and from (1.8) that 

the effect of a small sideslip angle is to bring about changes in velo- 

city and pressure to a second order. The sum q$ + q$ is a solution to 

the problem of flow past a wing without slip. Supplementary pressure 

caused by sideslip is determined from 

PP 
O- _-29&2p!g (1.9) 

Formula (1.9) demonstrates that on the vortex sheet which corresponds 

to the wing in a flow without sideslip we have 

-=_p!g acF2’ 
8X 

(1.10) 

i.e. the derivative a&'/ax displays a discontinuity when passing 

through the vortex sheet. 

If the solution to flow past the wing without sideslip is already 

known, supplementary pressure due to sideslip has to be determined by 

solving the nonhomogeneous equation (1.5) for the conditions in the 

third of the formulas (1.6) and (1.10). 

2. Determination of potential foc:M > 1 with finite first 
derivatives. When dealing with supersonic approach stream velocities 

the problem of finding a solution to Equation (1.5) is made difficult 

because the term on the right-hand side, in a whole series of cases 
close to the surface, assumes infinitely large values. On a delta wing 

with subsonic leading edges, as we get close to the characteristic sur- 

face which divides the turbulent flow from the undisturbed flow, the 

second derivatives of potential d tend to infinity as 
1 

~/~-(M2--1)(y2+?) 
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Because of this, the assumption that pd2&/dxaz is a second-order 

quantity is doubtful, though it was valid in deriving Equation (1.5). 

The same should be said of the first derivatives +2aof the supplementary 

velocities arising from sideslip, which in a whole region of the flow, 

can assume very large values. 

Peculiarities of this kind have been studied by Lighthill. He evolved 

a highly-developed small-parameter method applicable to cases where the 

normal method is divergent. As in [l 1 we introduce the new coordinates 

Xl = PJ + Vl (5, ,?I, 4, y1= Y + Y2(? ?.i, 4, z1= 2 + y3(z, y, 2) (2.1) 

where vl, v2, v3 are small first-order quantities. Below, we will only 

deal with the first two terms in the small-parameter series which is the 

solution to Equation (1.1). The aim of the transformation of (2.1) is to 

choose vl, v2 and vg such that, in the application of the small-parameter 

method to the equation for C$ in the new coordinates, the right-hand side 

of the equation, determining the second approximation, be finite every- 

where. 

At the same time as the transformation of (2.1), we introduce a func- 

tion $ instead of the potential, using the formula 

(2.2) 

If we replace the derivatives of qS with respect to x, y and z in +a- 

tion (1.1) by derivatives of @with respect to nl, y1 and 5, and neglect 

third- and higher-order terms, we obtain, instead of Equation (1.1) 

_ 2M2 az* a* 2M2a az@ 
ax,az, az, adej1 

- 2M2pa 
11 

(2.3) 

'Ihe invariance of Equation (1.1) with respect to transformation (2.1) 

is evidence of the connection between particular solutions of (1.4) and 

(1.5) and such transformations of independent variables which, in the 

new coordinate system, reduce the equations for the potential to linear 
ones. If 

aq v3x = -92' (2.4) 

then, in Equation (1.11, written in the new variables, the last term dis- 
appears. (With regard to &$/ax, agay and a+/az we should only imply 
first-order quantities which have already been found in solving (1.31.) 
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'Ihe first and second derivatives of vl, v2 and v3 should not have any 

singularities. 'Ihe appearance of singularities when differentiating the 

left-hand side of (2.4) is due to discontinuities in the values of the 

second derivatives of &. Functions vl, v2 and vJ can also be chosen from 

the condition 

In Lighthill's method the transformations (2.1) are determined from 

the condition that the right-hand side of the equation for (p2 vanishes 

only on surface discontinuities of the derivatives of the potential. Ihis 

leads to an increase in the number of terms on the right-hand side of the 

equation for 1/12. 'Ihe conditions just mentioned allow one to determine 

transformations which can simplify the problem of finding a solution in- 

volving finite derivatives. Additionally, the invariance of (1.1) with 

respect to transformations (2.1) and (2.2) allows one to give a simple 

method, emanating from the solution of Equations (1.31, (1.4) and (1.5), 

for determining the velocity potential, as discussed below, 

Assume, in first approximation, the velocities within a certain region 

to be continuous, while their derivatives are discontinuous. 'lhen, in 

addition to the conditions (1.61, it is only necessary to satisfy a con- 

dition that the potential be continuous. It may turn out that the poten- 

tial is given just at the surface-of discontinuity of second derivatives. 

Ihis latter case appears, indeed, to be a general one because, in problems 

which have been dealt with until the present time, surfaces of Equation 

(1.3) have been characteristic of discontinuous surfaces, so that they 

can be regarded as boundaries of regions within which solutions are de- 

termined. Thus, we will discuss the problem of finding a solution to 

Equation (1.1) within a given region whose whole boundary or part of it 

are surfaces of discontinuity of the second derivatives of the first 

approximation to the accurate solution. At the boundaries of the region 

only values of the potential are given. Denote by &, & and &' solu- 

tions of Equations (1.31, (1.4) and (1.5) for the given boundary condi- 

tions. Furthermore, let 4 be a solution of the equation of the supplement- 

ary potential in the x1-, yl-, zl-coordinate system, so chosen that the 

first derivatives of the supplementary potential, determined by the small- 

parameter method, are finite. In the sum of the solutions of Equations 

(1.31, (1.41 and (1.5) we alter the symbols; instead of x, y, t, we write 

Xl, Yrt Zl' 'lhen this sum will be the solution of Equation (2.3), i.e. 

'c‘lh 91, d + 'p2 (x.1, 2/l, 51) -I- %'(Xl, $11 ‘4 = $ @I, Yl, z,) 

According to Formula (2.2) we have 
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(2.5) 

In first approximation in the system of coordinates defined by (2.11, 

the equation for Cpl and the boundary conditions have both the same form. 

This allows us to write down on the right-hand side of Fquation (2.5) 

%l 8% - 

ax ’ ay ’ az i?% instead of%, 2 , 2 

‘lbe potential + determined by Equation (2.51 satisfies the equation 

for the supplementary potential and has finite first derivatives. We will 

demonstrate that 4 satisfies the same boundary conditions as & + & + 

‘. To this end, in those regions where the derivatives of &, & and 

$ are finite, we expand those quantities in a series of powers of vl, 

v2 and v3. Neglecting third-order and higher terms, we find that 

(2.6) 

‘lhe first derivative on the right-hand side of (2.5) is finite for 

any x1, yl, rl. lherefore, relation (2.6) will be valid also on the 

second derivative surface of discontinuity. Thus, $ will indeed be the 

solution of the formulated problem, while Formula (2.5) gives a simple 

method of finding it, using a solution obtained by the usual small-para- 

meter method. It should be observed that, in the case just considered, 

on choosing vl, u2and v3 it is possible to apply the same conditions 

to these quantities as in [ 1 I, i.e. to require that the right-hand side 

of the second-order potential equation vanishes only at the surface of 

discontinuity. The transformations (2.1) are determined solely close to 

these surfaces, and only near to these surfaces does Formula (2.5) give 

values for the velocity which differ essentially from the first deriva- 

tives of the velocity potential obtained by the usual small-parameter 

method. 

3. Examples. 1. Supersonic velocities. Let us discuss a wing with 

straight subsonic leading edges (Fig. 2). The trailing edges will be 

regarded as supersonic, and therefore condition (1.10) will not be in- 

voked. It is easy to see that a solution to Equation (1.5) for condition 
(1.6) and &’ = 0 on the surface x2 = (M 2 - 1) (y2 + z2) will be 

It follows from the previous section that the values of $2’ determined 

by Formula (3.1) can be used directly for calculation of the pressure on 



1322 M.F. Pritulo 

the wing. When y = 0, &’ = 0. 

In using solution (3.1) it is easy to find, also, transformation co- 
ordinates leading to Equation (1.5) being homogeneous. Evidently, to do 
this, one should set 

M’Btgx 
VP = 0, 

My3 
~1=t~2X_MZ+lZ' Y3=&X-fip+1J: 

The boundary conditions (1.6) and q$ = 0 for x = d ( A’ - 1) (y2 + 2’) 
in variables X, y, z are of the same form. Therefore, 4 ;(%I, yI, z,) = 0 

and $(%I, YI, tI) is a solution to the same problem of flow past a wing 
without sideslip. (Transformations (2.1) do not, in this case, change 
the sweep-back angle of the leading edges). In going over from coordi- 

nates x1’ yl, tl to physical ones there appears a term in the potential, 

depending on p. Its magnitude coincides with +2 ‘, 
determined by Formula (3.1). 

2. Subsonic velocities. Suppose the leading 
edge of the wing is part of a straight line co- 
incident with the z-axis. In an incompressible 
fluid (M = 0) $2 ’ is determined by a homogeneous 
equation and boundary conditions (1.6) and (1.10). 
The following is a solution of this equation: 

Fig. 2. 
x 

0 
The condition dr$,‘/d~ = -@d~$l/az is fulfilled not only on the 

vortex sheet, but also on the wing. In an incompressible fluid, there- 
fore, supplementary pressure on a wing surface is zero. 

In the case of compressible gas we must add the following term to the 

above expression for $‘: 

and this expression is a solution of (1.5) with zero boundary conditions 
on the wing and on the vortex sheet. 

A change in the direction of the vortex sheet by an angle 6 leads to 
local change in angles of incidence of an order ai@ (ni is the induced 

angle of incidence or attack). In flow past high-aspect-ratio wings in 

an incompressible fluid, neglecting quantities of the order of ai, /?. we 

can set c&’ = 0. This leads to well-known formulas for calculating the 

spanwise load distribution on wings under sideslip flight conditions 

12 1. The particular solution (3.1) allows us to estimate the effect of 
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compressibility of air for wings with straight leading edges to the same 

order of accuracy. 
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